
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Policy Scripts to Detect Network Intrusions

Sanmeet Kaur, Maninder Singh

Abstract— Security is a big issue for all networks in today’s enterprise environment. Hackers and intruders have made many

successful attempts to bring down high-profile company networks and web services. Many methods have been developed to se-

cure the network infrastructure and communication over the Internet, among them the use of firewalls, encryption, and virtual

private networks. Intrusion detection is a relatively new addition to such techniques. Intrusion detection methods started appear-

ing in the last few years. In this paper Intrusion Detection System called Bro is discussed. The major emphasis is on the design

and development of the policy scripts to detect various network intrusions. These scripts are written using the scripting language

of Bro, which supports various special data types to support network level activities. It also has signature-matching features to

make threat signatures to match against various attacks and detect them later.

.

Index Terms— Intrusion, Intrusion Detection, Bro, Policy Scripts, HTTP, NIDS

—————————— ——————————

1 INTRODUCTION

oday’s network is very complex and the whole world is

focusing on ease of use and functionality. This is making

us more insecure. For hackers, these well-traveled paths

make networks more vulnerable than ever before and with

relatively little expertise hackers have significantly impacted

the networks of leading brands or government agencies.

Cyber crime is also no longer the prerogative of lone hackers

or random attackers. Today disgruntled employees, unethical

corporations, even terrorist organizations all look to the Inter-

net as a portal to gather sensitive data and instigate economic

and political disruption. With networks more vulnerable and

hackers equipped to cause havoc, it’s no surprise that network

attacks are on the rise. So there is a huge need of detecting the

threats and intrusion. For this purpose number of solutions is

there, IDS is one of them. BRO is the most effective NIDS

which can be used to detect these threats. However, no IDS

can detect all the intrusions. So we need a combination of

various techniques.

There are a number of well-known techniques for detecting

network intrusions. Some of these are:

 Signatures or pattern matching

 Content analysis and parsing

 Statistical analysis

 Anomaly detection

 Bayesian methods

Each of these techniques has their relative pros and cons.

Some are easy to use and quick to implement, but lead to a

high number of false-positives. Others are hard to understand

and are complex, but at the same time may be very effective

in detecting desired flows.

The objective is to analyze these techniques and develop pat-

terns (not in the regular expression sense but in the software

patterns one) that direct us in writing effective intrusion detec-

tion modules for a variety of network traffic classes. The

types of traffic which are of interest are:

 Web traffic, usually sent over HTTP [4] protocol.

 E-mail traffic, using one of the well known e-mail

protocols like SMTP, POP3 and IMAP [5].

 Webmail traffic. This is placed in a separate

category because this combines properties of both

web and e-mail traffic.

In this paper, these techniques are implemented by developing

Policy Scripts using Bro IDS. Both Bro analyzers and scripts

are used to achieve the goal.

2. IMPLEMENTATION DETAILS AND EXPERI-

MENTAL RESULTS

In this part the policy scripts of Bro to detect various network

intrusions are discussed. Various kind of traffic is captured by

using Bro and analyzed offline. Some of the scripts are exper-

imented on the live traffic also.

Figure 1: Implementation setup Diagram

The following steps are performed while implementing Policy

Scripts:

1. First the traffic is captured by using wireshark [12] (earlier

Ethreal) or by using libpcap feature inbuilt in Bro. This will

be captured in a binary file with extension .tcpdump or .out,

T

————————————————

 Sanmeet Kaur is Assistant Professor in School of Mathematics and Com-
puter Applications, Thapar University Patiala. E-mail:
sanmeet.bhatia@thapar.edu

 Dr. Maninder Singh is Associate Professor and Head in Computer Science
and Engineering Departent Thapar University Patiala. Email:
msingh@thapar.edu

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

for example trace.out.

2. Second, the policy script is written using Bro Scripting

language. This file is having an extension .bro like s_http.bro

and is placed in /usr/local/bro/policy or /user/local/bro/site

directory.

3. Third, this script is run against the captured trace file to

detect the required intrusion by using the following syntax:

 bro –r tracefile scriptfile

4. If the traffic is live instead of captured one then also bro

can analyze it by using –i used for interface instead of –r for

read mode like:

bro –i scriptfile

The following are various tasks and milestones completed

and their results. One of the traffic files were taken from the

Bro Workshop 2007 [2]. This was modified using wireshark

and later used in some of the experiments. The name of this

traffic file is mail.trace.

3.1 Reporting all the HTTP URLs in the traffic

In this milestone all the URLs which are visited by a particu-

lar machine are reported by the Bro[1]. A script has been

written to report all HTTP URLs in the traffic. The trace.out

generated by the system is shown below.

Trace File: trace.out

This is the captured traffic file against which s_ http-

header.bro policy script will run.

The following is the command to see the results:

 bro -r trace.out s_http-header.bro

Result:

Figure 2: Reporting HTTP URLs visited by a host.

3.2 Reporting all the connections which are accessing

www.youtube.com using HTTP

In this milestone all the connections which are accessing

www.youtube.com using HTTP are reported by Bro. A script

has been written and trace.out generated by the system is

shown below.

Trace file: trace.out

The above is the captured traffic file against which s_ http-

header1.bro policy script will run. The following is the com-

mand to see the results:

 bro -r trace.out s_http-header1.bro

Result:

Figure 3: Reporting all the connections which are accessing www.youtube.com using HTTP

3.3 Reporting all the connections that includes emails di-

rected to a particular email server

 In this milestone all the connections that have a particular

text like ―@beta.banana.edu" in them are reported by Bro.

The intention is to find out all emails that might be addressed

to this account. SMTP [13] protocol support is required in this

task. The trace.out generated by the system is shown below.

Trace File: mail.trace [Bro workshop 2007]

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

The above is the captured mail traffic file against which s_

smtp.bro policy script will be experimented . The following is

the command to see the results:

 bro -r mail.trace s_smtp.br

Result:

Figure 4: Reporting all the connections that have text ―@beta.banana.edu"

3.4 Reporting all the connections that have a particular

text like “@beta.banana.edu" or "@finch.eyrie.af.mil" in

them

In this milestone all the connections that have a particular text

like ―@beta.banana.edu" or "@finch.eyrie.af.mil" in them are

reported by Bro. The intention is to find out all emails that

might be addressed to any of these accounts. SMTP protocol

support is required in this task. The trace.out generated by the

system is shown below.

Trace File: mail.trace [Bro workshop 2007]

The above is the captured mail traffic file against which s_

smtp.bro policy script will be experimented . The following is

the command to see the results:

 bro -r mail.trace s_smtp1.bro

Result:

Figure 5: Reporting connections that have ―@beta.banana.edu" or "@finch.eyrie.af.mil" in them

3.5 Detect if somebody is trying to access a particular

website like “pic.geocities.com” using HTTP, log all fur-

ther connection attempts by that host

In this milestone we have captured HTTP and other network

traffic from multiple clients. Once it is detected that some-

body is trying to access a particular website like

―pic.geocities.com‖ using HTTP, all further connection at-

tempts by that host are logged. The trace.out generated by the

system is shown below.

Trace File : mail.trace

The above is the captured traffic file against which s_ excer-

cise5.bro policy script will be experimented. The following is

the command to see the results:

 bro -r mail.trace s_excercise5.bro

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Result:

Figure 6: Logging all connections that attempts to access pic.geocities.com

3.6: Logging connections those attempt to access

pic.geocities.com in a file instead of stdout

In this task we have captured HTTP and other network traffic

from multiple clients. Once it is detected that somebody is

trying to access pic.geocities.com using HTTP, all further

connection attempts by that host are logged and written to a

file, instead of stdout. The trace.out generated by the system

is shown below.

Trace File : mail.trace

The above is the captured traffic file against which s_ excer-

cise6.bro policy script will be experimented. The following

are the commands to see the results:

1) bro -r mail.trace s_exercise6.bro

2) less http.log

Result:

Figure 7: Logging connections those attempt to access pic.geocities.com in a file instead of stdout

3.7 Detecting all GTalk traffic in a captured file using a

script

In this task Gtalk traffic is detected out of the captured traffic.

There is no event for this. Here signatures are used. We have

detected this with a captured traffic in some trace File.

Trace File: gtalk1.trace

The above is the captured traffic file against which

s_gtalkcap.bro policy script will be experimented. The full

packets can’t be captured by this approach. Only contents of

headers will be captured. Those contents are stored in a file

called s1.trace.The following are the commands to see the

results:

bro -r

gtalk1.t

race

s_gtalk

cap.bro

Result:

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Figure 8: Output showing Gtalk traffic

To see the captured content file less command can be used

like below:

less s1.trace

Result:

Figure 9: Tracefile with content information of packet headers

3.8 Detect all packets of live GTalk traffic using a script

In the previous exercise not all information about packets but

only headers information is stored. Detect all packets of live

GTalk traffic using a script.

In this task no trace file is there as we have experiment it on

live traffic. So bro –i will be used. Following is the complete

command to capture the packets in a trace file:

bro -i eth0 -w a.trace s_gtalklive.bro

To see the output captured in the tracefile a.trace we can not

simply use less command because it’s a binary file. However,

we can use tcpdump command to see the captured packets.

Command to See the Captured gtalk Traffic:

tcpdump -r a.trace

Result:

Figure 10: Captured packets with Gtalk traffic

3.9 A Bro script, where the user can maintain a list of

URLs, if any of the URLs are hit, log the connection to a

file

Trace File: trace.out

The above file is captured traffic file against which the script

s_connlog.bro will be experimented. The following command

will be used to run the script:

bro -r trace.out s_connlog.bro

The output is logged in a file instead of stdout. The following

command is used to see that log file.

less http.log

Result:

Figure 11: Connections attempting to access restricted URLs

4. CONCLUSION AND FUTURE WORK

Computer networks have brought the world together by bridg-

ing the information gap among people. Network technology

has undergone a revolution with better and faster ways of

sending information between computers. Unfortunately secu-

rity systems and policies to govern these networks have not

progressed as rapidly. Today’s network is very complex and

the whole world is focusing on ease of use and functionality.

This is making us more insecure. For hackers, these well-

traveled paths make networks more vulnerable than ever be-

fore and with relatively little expertise hackers have signifi-

cantly impacted the networks of leading brands or government

agencies. Cyber crime is also no longer the prerogative of

lone hackers or random attackers. Today disgruntled employ-

ees, unethical corporations, even terrorist organizations all

look to the Internet as a portal to gather sensitive data and

instigate economic and political disruption. With networks

more vulnerable and hackers equipped to cause havoc, it’s no

surprise that network attacks are on the rise. So there is a huge

need of detecting the threats and intrusion. For this purpose

number of solutions is there, IDS is one of them. Bro is the

most popular and effective IDS which can be used to detect

these threats.

In this paper we have explored and designed the policy scripts

of Bro to detect various kinds of traffic like web traffic, mail

traffic, web mail traffic etc. The scripts are experimented

against captured traffic as well as live traffic. However no IDS

can detect all the intrusions. So we need a combination of

various techniques.

5. REFERENCES

[1] Bro: An Open Source Network Intrusion Detection Sys-

tem, Robin Sommer, Computer Science Department, TU

Munchen, Germany, 2003

[2] Bro Workshop 2007, http://www.bro-ids.org/bro-

workshop-2007

[3] Erricsson, ―Managing Network Security‖, White Paper,

October 2006

http://www.bro-ids.org/bro-workshop-2007
http://www.bro-ids.org/bro-workshop-2007

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

[4] Network Protocols Handbook, Second Edition, Javvin

Technologies,Inc.

[5] P. Boer & M. Pels, ―Host-based Intrusion Detection Sys-

tems‖, February 2005

[6] S. McCanne, C. Leres and V. Jacobson, libpcap, available

via anonymous ftp to ftp.ee.lbl.gov, 1994

[7] Theuns Verwoerd , ―Active Network Security‖, Honours

Report 5 November, 1999

[8] Vern Paxson, Flexible, High-Speed Intrusion Detection

Using Bro, Berkley, CA, USA, 2004, http://www-

nrg.ee.lbl.gov/bro.html

[9] Vern Paxson , Bro: A System for Detecting Network In-

truders in Real-Time, Lawrence Berkeley National Laboratory

[10] Wayne T Work, ―Intrusion Detection Systems‖, Security

Gauntle Consulting,Naugatuck

[11] William Stalling, Cryptography and Network Security

Principles and Practices, Pearson Education, 2002

[12] Wireshark, Man Page

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

